# Lecture 7 <br> Equipment Replacement Problem 

MATH3220 Operations Research and Logistics
Feb. 09, 2015

The simplest model
Regeneration point approach

More complex
equipment
replacement problem

Pan Li<br>The Chinese University of Hong Kong

## Agenda

(1) The simplest model

Regeneration point approach

More complex
equipment
replacement problem
(2) Regeneration point approach
(3) More complex equipment replacement problem

## The Simplest Model

## - Problem

Our basic problem concerns a type of machine (perhaps an auto-mobile) which deteriorates with age, and make decisions about when to replace the incumbent machine, when to replace its replacement, etc., so as to minimize the total cost during the next $N$ years.

## - Assumption

- We must own such a machine during each of the $N$ time periods (say years).
- $y$ is the age of the machine when we start the process.
- $c(i)$ is the cost of operating for one year a machine which is of age $i$ at the start of the year.
- $p$ is the price of a new machine (of age 0 ).
- $t(i)$ is the trade-in value received when a machine which is of age $i$ at the start of a year is traded for a new machine at the start of the year.
- $s(i)$ is the salvage value received for a machine that has just turned age $i$ at the end of year $N$.


## Dynamic Programming Model

(i) Optimal value function: $S(x, k)$ is the minimum cost of owning a machine from year $k$ through $N$, starting year $k$ with a machine just turned age $x$, for $k=1,2, \ldots, N$; $x=1,2, \ldots, k-1, y+k-1$ when $k>1$; and $x=y$ when $k=1$. Here $y$ is the age of the starting machine.
(ii) Recurrence relation:

$$
S(x, k)=\operatorname{Min}\left\{\begin{array}{l}
\text { buy : } p-t(x)+c(0)+S(1, k+1) \\
\text { keep : } c(x)+S(x+1, k+1)
\end{array}\right.
$$

(iii) Optimal policy function: $P(x, k)=B$ (buy) if buy is cheaper than keep in the recurrence relation, and $P(x, k)=K$ (keep) if otherwise.
(iv) BOUNDARY CONDITION: $S(x, N+1)=-s(x)$ for $x=1,2, \ldots, N$ and $y+N$.
(v) ANSWER SOUGHT: $S(y, 1)=$ the minimum cost.

## Example

As an example, consider the following equipment replacement problem:

$$
\begin{aligned}
& N=5 \\
& y \text { (the age of the incumbent machine at the start of year } 1)=2 \\
& c(0)=10, c(1)=13, c(2)=20, c(3)=40, c(4)=70 \\
& c(5)=100, c(6)=100 \\
& p=50 \\
& t(1)=32, t(2)=21, t(3)=11, t(4)=5, t(5)=0, t(6)=0 \\
& s(1)=25, s(2)=17, s(3)=8, s(4)=0, s(5)=0, s(7)=0
\end{aligned}
$$

Regeneration point approach

Note that we do not need $s(6)$, as there is no chance that the car will be of six years old at the end of fifth year.

## Example

The DP computations are summarized in the following able.

| $x$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| 6 | $S(x, k)$ | -25 | -17 | -8 | 0 | 0 | - | 0 |
| 5 | keep | -4 | 12 | 40 | 70 | - | 100 |  |
|  | buy | 3 | 14 | 24 | 30 | - | 35 |  |
|  | $S(x, k)$ | -4 K | 12 K | 24 K | 30 B | - | 35 B |  |
| 4 | keep | 25 | 44 | 70 | - | 135 |  |  |
|  | buy | 24 | 35 | 45 | - | 56 |  |  |
|  | $S(x, k)$ | 24 B | 35 B | 45 B | - | 56 B |  |  |
| 3 | keep | 48 | 65 | - | 126 |  |  |  |
|  | buy | 52 | 63 | - | 79 |  |  |  |
|  | $S(x, k)$ | 48 K | 63 B | - | 79 B |  |  |  |
| 2 | keep | 76 | - | 119 |  |  |  |  |
|  | buy | 76 | - | 97 |  |  |  |  |
|  | $S(x, k)$ | 76 KB | - | 97 B |  |  |  |  |
| 1 | keep | - | 117 |  |  |  |  |  |
|  | buy | - | 115 |  |  |  |  |  |
|  | $S(x, k)$ | - | 115 B |  |  |  |  |  |

We see that the minimum cost is 115 ; and the optimal sequence of decisions is $B K B B K$ or $B B K B K$, where $B$ is buy and $K$ is keep.

## Example

The DP computations are summarized in the following able.

| $x$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| 6 | $S(x, k)$ | -25 | -17 | -8 | 0 | 0 | - | 0 |
| 5 | keep | -4 | 12 | 40 | 70 | - | 100 |  |
|  | buy | 3 | 14 | 24 | 30 | - | 35 |  |
|  | $S(x, k)$ | -4 K | 12 K | 24 K | 30 B | - | 35 B |  |
| 4 | keep | 25 | 44 | 70 | - | 135 |  |  |
|  | buy | 24 | 35 | 45 | - | 56 |  |  |
|  | $S(x, k)$ | 24 B | 35 B | 45 B | - | 56 B |  |  |
| 3 | keep | 48 | 65 | - | 126 |  |  |  |
|  | buy | 52 | 63 | - | 79 |  |  |  |
|  | $S(x, k)$ | 48 K | $\underline{63 \mathrm{~B}}$ | - | 79 B |  |  |  |
| 2 | keep | 76 | - | 119 |  |  |  |  |
|  | buy | 76 | - | 97 |  |  |  |  |
|  | $S(x, k)$ | 76 KB | - | 97 B |  |  |  |  |
| 1 | keep | - | 117 |  |  |  |  |  |
|  | buy | - | 115 |  |  |  |  |  |
|  | $S(x, k)$ | - | $\underline{115 \mathrm{~B}}$ |  |  |  |  |  |

We see that the minimum cost is 115 ; and the optimal sequence of decisions is $B K B B K$ or $B B K B K$, where $B$ is buy and $K$ is keep.

## Example

The DP computations are summarized in the following able.

| $x$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | $S(x, k)$ | -25 | -17 | -8 | 0 | 0 | - | 0 |
| 5 | keep | -4 | 12 | 40 | 70 | - | 100 |  |
|  | buy | 3 | 14 | 24 | 30 | - | 35 |  |
|  | $S(x, k)$ | -4 K | 12 K | 24 K | 30 B | - | 35 B |  |
| 4 | keep | 25 | 44 | 70 | - | 135 |  |  |
|  | buy | 24 | 35 | 45 | - | 56 |  |  |
|  | $S(x, k)$ | 24 B | $\underline{35 \mathrm{~B}}$ | 45 B | - | 56 B |  |  |
| 3 | keep | 48 | 65 | - | 126 |  |  |  |
|  | buy | 52 | 63 | - | 79 |  |  |  |
|  | $S(x, k)$ | 48 K | 63 B | - | 79 B |  |  |  |
| 2 | keep | 76 | - | 119 |  |  |  |  |
|  | buy | 76 | - | 97 |  |  |  |  |
|  | $S(x, k)$ | 76 KB | - | 97 B |  |  |  |  |
| 1 | keep | - | 117 |  |  |  |  |  |
|  | buy | - | 115 |  |  |  |  |  |
|  | $S(x, k)$ | - | $\underline{115 \mathrm{~B}}$ |  |  |  |  |  |

We see that the minimum cost is 115 ; and the optimal sequence of decisions is $B K B B K$ or $B B K B K$, where $B$ is buy and $K$ is keep.

## Exercise

How many additions and how many comparisons, as a function of the duration of the process $N$, are required?

## Shortest-path Representation of the Problem

Almost all dynamic-programming problems can be thought of as problems seeking the minimum-cost path (generally in more than two dimensions and therefore generally not easily drawn). Letting the $x$ axis denote the year and the $y$ axis represent the age of the machine, we start at $(1, y)$. The "buy" decision takes us to $(2,1)$ at an arc cost of $p-t(y)+c(0)$ and "keep" leads us to $(2, y+1)$ with an arc cost of $c(y)$. The same reasoning applies at each point.

## Shortest-path Representation of the Problem



The simplest model
Regeneration point approach

More complex
equipment
replacement problem

## Shortest-path Representation of the Problem



The simplest model
Regeneration point approach

More complex equipment
replacement problem

## Regeneration Point Approach

Unlike many path problem, for the equipment replacement problem, we can be sure in advance that all paths, but one, eventually return at least once to a vertex on the horizontal line $y=1$. When we return to $y=1$ the process is said to "regenerate" itself and we can ask the question, "Given an initial situation, when shall we make our first purchase?"

(i) Optimal value function: $S(i)=$ the minimum attainable cost for the remaining process given we start year $i$ with a one-year-old machine.
(ii) Recurrence relation:

$$
S(i)=\min \left[\begin{array}{l}
\sum_{k=1}^{N-(i-1)} c(k)-s(N-i+2) \\
\min _{j=i, \ldots N N}\left\{\sum_{k=1}^{j-i} c(k)+p-t(j-i+1)+c(0)+S(j+1)\right\}
\end{array}\right]
$$

The simplest model
(iii) Optimal policy function:
$P(x, k)=$ Keep until end if the value in the first row in the recurrence relation is less than the value in the second row, and
$P(x, k)=$ Buy at the start of year $j^{\prime}$ if the minimum value is obtained in the second row in the recurrence relation at $j=j^{\prime}$.
(iv) Boundary condition: $S(N+1)=-s(1)$
(v) ANSWER SOUGHT: $S(1)$ ???

Using the procedure to solve for the data shown in the figure, we get

$$
\begin{aligned}
& S(6)=-25 \text {; } \\
& S(5)=\min \left[\frac{13-17}{28+S(6)}\right]=-4, \\
& P(5)=\text { keep until end; } \\
& S(4)=\min \left[\begin{array}{l}
13+20-8 \\
\left.28+S(5), 13+39+S(6)^{\prime}\right)
\end{array}\right. \\
& P(4)=\text { buy at the start of year } 4 \text {; } \\
& S(3)=\min \left[\begin{array}{l}
13+20+40 \\
28+S(4), \frac{13+39+S(5)}{49+S(6)} \\
13+20+48, ~
\end{array}\right]=48, \\
& P(3)=\text { buy at the start of year 4; } \\
& S(2)=\min \left[\begin{array}{l}
13+20+40+70 \\
\frac{28+S(3), 13+39+S(4),}{13+20+49+S(5),} \\
13+20+40+55+S(6)
\end{array}\right]=48,
\end{aligned}
$$

$P(2)=$ buy at the start of either year 2 or 3.


The answer is:
min

$$
\begin{aligned}
& {[20+40+70+100+100} \\
& 39+S(2) \text {, } \\
& 20+49+S(3) \text {, } \\
& 20+40+55+S(4) \text {, } \\
& 20+40+70+60+S(5) \text {, } \\
& 20+40+70+100+60+S(S)]
\end{aligned}
$$

$P(1)=$ buy at start of year 1

## More Complex Equipment Replacement Problem

- In the above equipment-replacement problem, one additional decision is available, namely, "overhaul".
- An overhauled machine is better than one not overhauled,

The simplest model
Regeneration point approach

More complex
equipment
replacement problem but not as good as a new one.

- Let us further assume that performance depends on the actual age of equipment and on the number of years since last overhaul, but is independent of when and how often the machine was overhauled prior to its last overhaul.

The known data are
$k=$ the $k$ th year;
$i=$ a machine's current age;
$j=$ age at last overhaul;
$e(k, i, j)=$ cost of exchanging a machine of age $i$, last overhauled at age $j$ for a new machine at the start of year $k$;
$c(k, i, j)=$ operating cost during year $k$ of a machine of age $i$ and last overhauled at age $j$;
$o(k, i)=$ cost of overhauling a machine of age $i$ at the beginning of year $k$;
$s(i, j)=$ salvage value at the end of year $N$ of a machine which has just become age $i$ and last overhauled at $j$ years ago.

If $j=0$, then the machine has never been overhauled.

Using the consultant's approach, we can see that, if we want to pursue an optimal replacement policy, the minimal information needed at the start of the $k$ th year is the age of the car and how long ago it has been overhauled. Thus we have the following optimal value function:

$$
\begin{aligned}
f(k, i, j)= & \text { the minimum cost during the remaining years } \\
& \text { given we start year } k \text { with a machine of age } i \\
& \text { and last overhauled at age } j .
\end{aligned}
$$

The simplest model

The recurrence relation is:
$f(k, i, j)=\min \left[\begin{array}{l}\text { Replace: } e(k, i, j)+c(k, 0,0)+f(k+1,1,0) \\ \text { Keep: } \quad c(k, i, j)+f(k+1, i+1, j) \\ \text { Overhaul: } o(k, i)+c(k, i, i)+f(k+1, i+1, i)\end{array}\right]$
and the boundary condition is

$$
f(N+1, i, j)=-s(i, j) .
$$

For $k=N$, assuming the incumbent machine is new, we must compute $f$ for $i=1,2, \ldots, N-1$ and $j=0,1,2, \ldots, i-1$.
This involves $N-1$ evaluations of three decisions for $i=N-1, N-2$ for $i=N-2, \ldots$, and 1 for $i=1$.
$\Rightarrow$ A total of $(N-1) N / 2$ such evaluations.
For $k=N-1$, we have $(N-2)(N-1) / 2$ such evaluations.
For $k=N-2$, we have $(N-3)(N-2) / 2$ such evaluations.

The simplest model
$\Rightarrow$ The total number is precisely

$$
\sum_{i=2}^{N}(i-1) i / 2+1
$$

or, approximately

$$
\sum_{i=1}^{N} i^{2} / 2 \approx N^{3} / 6
$$

Consequently, the total number of operations is roughly $N^{3}$ since each evaluation of the right-hand side of the recurrence relation requires a total of seven additions and comparisons.

